MLT−2 adalah dimensi energi potensial. C. ML 2 T adalah dimensi momentum. D. ML 3 T −2 adalah dimensi usaha. E. ML 2 T −1 adalah dimensi daya. Pembahasan Sedangkan temperatur gas di titik A adalah T sehingga: P A V A = nRT Dengan demikian, usaha pada proses CA menjadi: W = nRT − P A V B
Assalamu’alaikum warahmatullahi wabarakaatuh – Modulus Young itu sangat erat kaitannya dengan suatu teori tentang ke elastisitas benda. Lalu, apa sih yang dimaskud dengan modulus elastisitas itu? Apakah memiliki keterkaitan dengan suatu sifat elastisitas dari suatu benda? Dan apa saja persamaan dari Modulus Young itu sendiri? Langsung saja simak dan kita belajar sama sama dalam pembahasan berikut ini. Sumber Instagram Galerisipil 1. Pengertian Modulus Young Modulus Young Adalah ukuran kekakuan dari bahan elastis dan suatu besaran yang bisa digunakan untuk mengkarakterisasi bahan. Hal ini berkaitan dengan ukuran tegangan dan regangan suatu benda maka disebut berkaitan dengan elastisitan benda. Agar kalian memahaminya dibawah ini udah saya sediakan grafik hubungan antara tegangan dan regangan. Sumber Instagram Galerisipil Keterangan Gambar Grafik biru dari 0 sampai A merupakan garis linear elastis, dimana perbandingan tegangan dan regangan adalan konstan. Pada titik A apabila gaya atau tegangan dihentikan diantara titik ini maka benda akan kembali seperti semula. Pada titik B apabila gaya atau tegangan melebihi titik ini, maka benda tidak akan kembali ke dimensi semula. Pada titik C apabila gaya atau teganan sampai titik ini, maka benda akan patah. Sumber Instagram Galerisipil Dengan Hukum Hooke kita dapat menarik hubungan antara tegangan dan regangan di wilayah elastis linear. Perbandingan antara tegangan dan regangan itulah Modudlus Young atau Modulus Elastisitas. Rumusnya sudah saya berikan pada gambar diatas ya. Baca Juga Pengertian dan Rumus Poisson Ratio Pada Suatu Benda 2. Tabel Nilai Modulus Young Pada Jenis Bahan Sumber Instagram Galerisipil Nilai modulus elastisitas hanya bergantung pada jenis bahan suatu benda, tidak bergantung pada ukuran ataupun bentuk benda. Gambar diatas berikut ini adalah nilai modulus elastisitas dari beberapa jenis bahan yang sudah dirangkum dan diringkas. Baca Juga 5 Tipe Model Desain Kolam Renang Di Lahan Sempit Gimana temen temen sudah paham kan tentang Apa itu Modulus Young? Pengertian, Tabel Nilai, Grafik Terlengkap ini. Yap teruslah belajar ya sobat, dan jika dimungkinkan berbagilah ilmu kepada sesama baik itu ilmu duniawi ataupun agama. Semoga artikel yang ihategreenjello bagikan ini bermanfaat untuk kalian semua. Terimakasih. Wa alaikumussalam warahmatullahi wabarakatuh.
Modulusyoung berkaitan dengan ukuran tegangan dan regangan suatu benda. Gaya yang dibutuhkan tiap satuan luas penampang disebut dengan tegangan. Sedangkan pertambahan panjang dari panjang semula disebut dengan regangan. Sederhananya, modulus elastisitas (young) adalah perbandingan antara tegangan dan regangan.
BerandaDimensi modulus Young adalah...PertanyaanDimensi modulus Young adalah... Jawabanjawaban yang tepat adalah yang tepat adalah Ditanyakan Dimensi Modulus Young E Jawab Dimensi Modulus Young dapat dicari menggunakan satuan dari persamaan berikut. Jadi, jawaban yang tepat adalah Ditanyakan Dimensi Modulus Young E Jawab Dimensi Modulus Young dapat dicari menggunakan satuan dari persamaan berikut. Jadi, jawaban yang tepat adalah B. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!126Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Simbol(E) adalah modulus elastisitas menyatakan perbandingan antara tegangan (e) dengan regangan (σ), atau modulus elastisitas berbanding lurus dengan tegangan, akan tetapi berbanding terbalik dengan besaran regangan. Satuan E = N / m 2, σ = N / m 2 atau P a, sedangkan regangan (e) tidak memiliki satuan dasar. Percobaan Hukum Hooke Qmeoomd SbvnsnEndmnQmeoomd Qbrnfm DMZKSME ZSMLQNLRF HNPNLM AMPMS FKARDRP ^KREO Ansusue Kdbg9 Emfm Zrmltnlme9 Cmsuln Mcaudmg ENF9 000=3=Iurusme9 Qblenl FbsneOrup9 M0Sblme9 Mous Lurenmwme, Cmyu _mramem, Gmnlmd NdymFugmffmaQod. Zbr`kcmme9 =1 Kltkcbr 33Msnstbe9 Mdan Pymgrnd Mewmr \MPV DMCKSMQKSNRF HNPNLM QBSMZME HMLRDQMP QBLENL RENXBSPNQMP PRDQME MOBEO QNSQM^MPMNDBOKE ‐ CMEQBE 33 Id. Ibeabrmd Puanrfme Lf. 0 ndboke 13102 Qbdp. 321 07223, 0?8?=3 Hmx . 321 0>221 _bcsntb9 gttp9// Bfmnd9 MCPQSML Fkaudus ykueo ampmt anmrtnlme sb`mrm sbabrgmem, ymntu mamdmg gucueome cbsmrmerbomeome tmrnl ame tbomeome tmrnl. Dbcng ibdmseym mamdmg pbrcmeaneome metmrm tbomeometmrnl ame rbomeome tmrnl. Guluf Gkklb cbrcueyn, " Inlm omym tmrnl fbdmfpmun cmtmsbdmstns pboms,fmlm pbrtmfcmgme pmeimeo pboms cbrcmeaneo durus sbcmeaneo abeomeomym tmrnleym ". Zbeoulurme Fkaudus ^kueo cbrtuiume uetul fbeampmtlme endmn fkaudusamrn cbcbrmpm cbeam dkomf ymeo anuin, amdmf lbgnaupme sbgmrn gmrn endmn fkaudus ymeonen cnmsmeym animanlme m`ume bdmstnsntms sumtu dkomf ymeo ampmt anouemlme lbtnlm lntmsbameo fbfndng cmgme-cmgme amrn sumtu lkestrulsn amdmf sbcumg cmeoueme. Zrksbaur amrn prmltnluf Fkaudus ^kueo nen an dmlulme abome fbeynmplme cbcbrmpm ibens dkomf dmdufbeoulur anfbesn amrn dkomf ymeo mlme lntm ouemlme sbcmeyml tnom lmdn, sbtbdmg ntudkomf an dbtmlme pmam auaulme pbeufpu dkomf ame an cbrnlme cbcme fmlsnfmd 32ormf,sbtbdmg ntu prmltnlme gmrus fbeomtur anmd neanlmtkr supmym anmd nean`mtkr fbeybetug cmonme dkomf emfue endmneym tbtmp cbrmam an meolm ekd. Pbsuamg sbfum dmeolmg tmanmfcnd smtu-pbrsmtu lbpneome cbcme ame an `mtmt endmn pbrucmgmeeym, sbtbdmg ntu ouemlmedkomf ymeo cbrcbam ame udmeon prksbaur abeome `mrm ymeo smfm.
Youngs modulus, Es MN/m2 10.35 - 24.15 17.25 - 27.60 34.50 - 55.20 10.35 - 17.25 69.00 - 172.50 2.07 - 5.18 5.18 - 10.35 10.35 - 24.15 Dimensi dari p adalah gaya per satuan panjang di sepanjang tiang. Gambar 2.16 Distribusi tegangan pada tiang (Reese, 1984) BAB 2 - STUDI PUSTAKA Laporan Tugas Akhir Analisis Daya Dukung Pondasi Tiang Bor
August 11, 2019 Post a Comment Dimensi dari modulus Young adalah ... A. M][L]2[T]-2 B. [M][L][T]-2 C. [M][L]-1[T]-2 D. [M][L]-2[T] E. [M][L]-2[T]-2 Pembahasan Diketahui Massa = [M] Panjang = [L] Waktu = [T] Ditanya Dimensi E = ... ? Dijawab Dimensi dari modulus Young bisa kita cari dengan menggunakan rumus Jadi Dimensi dari modulus Young adalah [M][L]-1[T]-2 Jawaban C - Semoga Bermanfaat Jangan lupa komentar & sarannya Email nanangnurulhidayat
Daripraktikum yang telah dilaksanakan dapat disimpulkan sebagai berikut : 1. Perbandingan antara regangan dan tegangan disebut sebagai modulus elastisitas atau modulus young. 2. Pertambahan panjang (∆l) yang didapat adalah 0 mm, 0,56 mm, 0,6 mm, 0,67 mm, 0,74 mm, dan 0,75 mm. 3.
Modulus elastisitas E adalah perbandingan antara tegangan dengan regangan, dirumuskan E = /e, dimana adalah tegangan dan e adalah regangan. Apa kabar adik-adik? Semoga kalian selalu dalam keadaan sehat. Materi fisika kita kali ini akan membahas tentang salah satu besaran dalam elastisitas, yaitu modulus elastisitas atau modulus young. Sebagaimana yang dipahami, elastisitas merupakan salah satu sifat dari benda-benda, yaitu kemampuan suatu benda kembali ke bentuk semula setelah diberi gaya. Unsur pokok dari elastisitas adalah tegangan, yang selanjutnya digunakan untuk menghasilkan regangan. Perbandingan antara keduanya disebut modulus elastisitas. Lantas, apa sih hakikat modulus elastisitas itu? Bagaimana bentuk rumusnya? Semuanya akan dijelaskan di dalam materi ini. Baiklah, kita mulai saja pembahasannya... Daftar Isi 1Pengertian Modulus Elastisitas Modulus Young e 2Simbol dan Satuan Modulus Elastisitas 3Rumus Modulus Elastisitas 4Contoh Soal 5Kesimpulan Pengertian Modulus Elastisitas Modulus Young Apa yang dimaksud dengan modulus elastisitas? Dalam ilmu fisika, modulus elastisitas atau modulus young adalah besar gaya yang diperlukan tiap satuan luas penampang batang agar batang mengalami pertambahan panjang. Gaya yang diperlukan tiap satuan luas penampang disebut tegangan. Sedangkan, pertambahan panjang dari panjang semula disebut regangan. Jadi, pada hakikatnya modulus elastisitas modulus young merupakan perbandingan antara tegangan dan regangan. Tegangan yang diperlukan untuk menghasilkan suatu regangan tertentu bergantung pada sifat bahan dari benda yang mendapat tegangan tersebut. Berikut ini tabel nilai modulus Elastisitas dari beberapa bahan Bahan Modulus Elastisitas Young N/m2 Aluminium 0,7 x 1011 Kuningan 0,91 x 1011 Tembaga 1,1 x 1011 Gelas 0,55 x 1011 Besi 0,91 x 1011 Timah 0,16 x 1011 Nikel 2,1 x 1011 Baja 2 x 1011 Tungsten 3,6 x 1011 1. Tegangan Tegangan adalah gaya per satuan luas penampang, disimbolkan dengan huruf Yunani Sigma , dan dinyatakan dalam satuan newton per meter kuadrat N/m2. Tegangan dirumuskan dengan persamaan matematis = F/A Keterangan = tegangan N/m2 F = gaya N A = luas penampang m2 2. Regangan Regangan adalah perbandingan pertambahan panjang suatu benda terhadap panjang benda mula-mula, disimbolkan dengan e. Regangan tidak memiliki satuan. Regangan dirumuskan dengan persamaan matematis e = Δl/l0 Keterangan e = regangan Δl = pertambahan panjang m l0 = panjang mula-mula m Simbol dan Satuan Modulus Elastisitas Young Dalam fisika, modulus elastisitas disimbolkan dengan E atau Y dan dinyatakan dalam satuan newton per meter kuadrat N/m2. Berdasarkan jenis satuannya, modulus elastisitas merupakan besaran turunan yang diturunkan dari besaran panjang, massa, dan waktu. Selain itu, besaran ini juga termasuk ke dalam besaran skalar sehingga untuk menyatakan cukup dengan nilai atau angka saja. Rumus Modulus Elastisitas Young Menurut Hooke, modulus elastisitas Young adalah perbandingan antara tegangan dan regangan suatu benda. Secara matematis, modulus elastisitas Young dirumuskan E = /e Keterangan E = Modulus elastisitas Young N/m2 = tegangan N/m2 e = regangan Oleh karena, = F/A dan e = Δl/l0, maka rumus di atas bisa juga dituliskan menjadi E = F/A/Δl/l0 Contoh Soal Modulus Elastisitas Young Berikut ini adalah beberapa contoh soal tentang modulus elastisitas Young Contoh Soal 1 Seutas kawat panjangnya 50 cm dan luas penampang 2 cm2. Sebuah gaya 50 N bekerja pada kawat tersebut sehingga kawat bertambah panjang menjadi 50,8 cm. Hitunglah a. Regangan strain kawatb. Tegangan stress kawatc. Modulus elastisitas kawatJawabDiketahuil0 = 50 cm = 0,5 m = 5 x 10-1 m Δl = 50 cm - 50,8 cm = 0,8 cm = 8 x 10-3 mA = 2 cm2 = 2 x 10-4 m2F = 50 N Ditanyakana. e......?b. .....?c. E....?Penyelesaiana. Regangan strain kawat ee = Δl/l0 = 8 x 10-3/5 x 10-1 = 1,6 x 10-2Jadi, regangan kawat tersebut adalah 1,6 x 10-2. b. Tegangan stress kawat = F/A = 50/2 x 10-4 = 2,5 x 105 N/m2Jadi, tegangan kawat tersebut adalah 2,5 x 105 N/m2. c. Modulus elastisitas kawatE = /e = 2,5 x 105 / 1,6 x 10-2 = 1,6 x 107 N/m2Jadi, modulus elastisitas kawat adalah 1,6 x 107 N/ 2Sebuah kawat logam dengan diameter 1,25 mm dan panjangnya 80 cm digantungi beban bermassa 10 kg. Ternyata kawat tersebut bertambah panjang 0,51 mm. Tentukan a. tegangan stressb. regangan strainc. modulus elastisitas yang membentuk kawat JawabDiketahuid = 1,25 mm = 1,25 x 10-3 ml0 = 80 cm = 0,8 mm = 10 kgΔl = 0,51 mm = 5,1 x 10-4 m g = 10 m/s2 Ditanyakana. .....? b. e.....?c. E.....?Penyelesaiana. Tegangan stress kawat = F/A = = x 10-32 = 8,13 x 107 N/m2Jadi, tegangan kawat tersebut adalah 8,13 x 107 N/m2. b. Regangan strain kawat ee = Δl/l0 = 5,1 x 10-4/0,8 = 6,375 x 10-4Jadi, regangan kawat tersebut adalah 6,375 x 10-4. c. Modulus elastisitas kawatE = /e = 8,13 x 107 / 6,375 x 10-4 = 1,28 x 1011 N/m2Jadi, modulus elastisitas kawat adalah 1,28 x 1011 N/ modulus elastisitas E adalah perbandingan antara tegangan dengan regangan, dirumuskan E = /e, dimana adalah tegangan dan e adalah adik-adik, udah paham kan materi modulus elastisitas di atas? Jangan lupa lagi dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga Dudi. 2007. Mudah dan Aktif Belajar Fisika untuk Kelas XI SMA/MA Program IPA. Bandung PT Setia Purna Inves. Saripudin, Aip dkk. 2007. Praktis Belajar Fisika untuk Kelas XI SMA/MA Program IPA. Jakarta Visindo Media Persada.
Reganganpanjang adalah perbandingan perubahan panjang (ΔL) akibat adanya gaya yang bekerja terhadap panjang benda yang di tinjau. Regangan (ε) adalah deformasi (perubahan bentuk) bagian akibat tegangan.Reganagan diukur sebagai rasuo perubahan dari sejumlah dimensi benda terhadap dimensi awal yang mana terjadi.
Table Of ContentsPenjelasan dengan langkah langkah Pelajari Lebih Lanjut Detail jawaban Dimensi dari modulus young adalah Penjelasan dengan langkah langkah Dalam fisika, dimensi digunakan sebagai lambang dalam besaran. Tujuan dari dimensi dalam fisika untuk menunjukkan cara penyusunan dalam besaran yang ditentukan. Pada dimensi sudah disusun secara SI dan dimensi fisika dinyatakan dan diberi kurung persegi Berikut merupakan dimensi besaran pokok yang harus dihafalkan supaya dapat menentukan dimensi besaran turunan dalam fotoPelajari Lebih Lanjut Dimensi energi Potensial cepat rambat bunyi dimensi secara lengkap dimensi jawaban Mapel FisikaKelas 10Bab 1 Ruang Lingkup FisikaKode soal 9 DefinisiModulus Massal: Modulus curah adalah kemampuan material untuk tahan terhadap kompresi. Ini adalah elastisitas volumetrik dan berbanding terbalik dengan Kompresibilitas. Objek yang mengalami deformasi inkompresibilitas ke segala arah ketika beban diterapkan dari semua arah. Modulus curah adalah tegangan volumetrik atas regangan volumetrik. Modulus Young E atau Y adalah ukuran kekakuan atau ketahanan padatan terhadap deformasi elastis di bawah beban. Ini menghubungkan tegangan gaya per satuan luas dengan regangan deformasi proporsional sepanjang sumbu atau garis. Prinsip dasarnya adalah bahwa suatu bahan mengalami deformasi elastis ketika dikompresi atau diperpanjang, kembali ke bentuk aslinya ketika beban dihilangkan. Deformasi lebih banyak terjadi pada bahan yang fleksibel dibandingkan dengan bahan yang kaku. Dengan kata lain Nilai modulus Young yang rendah berarti benda padat bersifat elastis. Nilai modulus Young yang tinggi berarti benda padat tidak elastis atau kaku. Persamaan dan Satuan Persamaan untuk modulus Young adalah E = / = F/A / ΔL/L 0 = FL 0 / AΔL Di mana E adalah modulus Young, biasanya dinyatakan dalam Pascal Pa adalah tegangan uniaksial adalah regangan F adalah gaya kompresi atau ekstensi A adalah luas permukaan penampang atau penampang tegak lurus terhadap gaya yang diberikan L adalah perubahan panjang negatif di bawah kompresi; positif saat diregangkan L 0 adalah panjang aslinya Sementara satuan SI untuk modulus Young adalah Pa, nilai paling sering dinyatakan dalam megapascal MPa, Newton per milimeter persegi N/mm 2 , gigapascal GPa, atau kilonewton per milimeter persegi kN/mm 2 . Satuan bahasa Inggris yang biasa adalah pound per square inch PSI atau mega PSI Mpsi. Sejarah Konsep dasar di balik modulus Young dijelaskan oleh ilmuwan dan insinyur Swiss Leonhard Euler pada tahun 1727. Pada tahun 1782, ilmuwan Italia Giordano Riccati melakukan eksperimen yang mengarah pada perhitungan modulus modern. Namun, modulus mengambil namanya dari ilmuwan Inggris Thomas Young, yang menggambarkan perhitungannya dalam Kursus Kuliah tentang Filsafat Alam dan Seni Mekanik pada tahun 1807. Mungkin harus disebut modulus Riccati, mengingat pemahaman modern tentang sejarahnya, tapi itu akan menyebabkan kebingungan. Bahan Isotropik dan Anisotropik Modulus Young sering kali bergantung pada orientasi material. Bahan isotropik menampilkan sifat mekanik yang sama ke segala arah. Contohnya termasuk logam murni dan keramik . Mengerjakan suatu bahan atau menambahkan pengotor ke dalamnya dapat menghasilkan struktur butir yang membuat sifat mekanik terarah. Bahan anisotropik ini mungkin memiliki nilai modulus Young yang sangat berbeda, tergantung pada apakah gaya dibebani sepanjang butir atau tegak lurus terhadapnya. Contoh bahan anisotropik yang baik termasuk kayu, beton bertulang, dan serat karbon. Tabel Nilai Modulus Young Tabel ini berisi nilai representatif untuk sampel berbagai bahan. Perlu diingat, nilai presisi untuk sampel mungkin agak berbeda karena metode pengujian dan komposisi sampel memengaruhi data. Secara umum, sebagian besar serat sintetis memiliki nilai modulus Young yang rendah. Serat alami lebih kaku. Logam dan paduan cenderung menunjukkan nilai tinggi. Modulus Young tertinggi dari semuanya adalah untuk carbyne, sebuah alotrop karbon. Bahan IPK Mpsi Karet regangan kecil 0,01–0,1 1,45– 3 Polietilen densitas rendah 0,11–0,86 1,6–6,5×10 2 Frustula diatom asam silikat 0,35–2,77 0,05–0,4 PTFE Teflon 0,5 0,075 HDPE 0,116 Kapsid bakteriofag 1-3 0,15–0,435 Polipropilena 1,5–2 0,22–0,29 polikarbonat 2– 0,29-0,36 Polietilen tereftalat PET 2–2,7 0,29–0,39 Nilon 2–4 0,29–0,58 Polistirena, padat 3– 0,44–0,51 Polistirena, busa 2,5–7x10 -3 -4 Papan serat kepadatan menengah MDF 4 0,58 Kayu sepanjang biji-bijian 11 Tulang Kortikal Manusia 14 Matriks poliester yang diperkuat kaca nanotube peptida aromatik 19–27 Beton berkekuatan tinggi 30 Kristal molekul asam amino 21–44 3,04–6,38 Plastik yang diperkuat serat karbon 30–50 serat rami 35 Magnesium Mg 45 Kaca 50–90 serat rami 58 Aluminium Al 69 10 Nacre mutiara kalsium karbonat 70 Aramid Enamel gigi kalsium fosfat 83 12 Serat jelatang yang menyengat 87 Perunggu 96-120 13,9-17,4 Kuningan 100–125 Titanium Ti 16 Paduan titanium 105-120 15–17,5 Tembaga Cu 117 17 Plastik yang diperkuat serat karbon 181 kristal silikon 130–185 Besi tempa 190–210 27,6–30,5 Baja ASTM-A36 200 29 Garnet besi itrium YIG 193-200 28-29 Kobalt-krom CoCr 220–258 29 Nanosphere peptida aromatik 230–275 33,4–40 Berilium Jadi 287 Molibdenum Mo 329–330 Tungsten W 400–410 58–59 Silikon karbida SiC 450 65 Tungsten karbida WC 450–650 65–94 Osmium Os 525–562 Tabung nano karbon berdinding tunggal 150+ Grafena C 1050 152 Berlian C 1050-1210 152–175 Karbina C 32100 4660 Moduli Elastisitas Modulus secara harfiah adalah "ukuran". Anda mungkin mendengar modulus Young disebut sebagai modulus elastisitas , tetapi ada beberapa ekspresi yang digunakan untuk mengukur elastisitas Modulus Young menggambarkan elastisitas tarik sepanjang garis ketika gaya yang berlawanan diterapkan. Ini adalah rasio tegangan tarik terhadap regangan tarik. Modulus curah K seperti modulus Young, kecuali dalam tiga dimensi. Ini adalah ukuran elastisitas volumetrik, dihitung sebagai tegangan volumetrik dibagi dengan regangan volumetrik. Geser atau modulus kekakuan G menggambarkan geser ketika suatu benda dikenai gaya yang berlawanan. Ini dihitung sebagai tegangan geser atas regangan geser. Modulus aksial, modulus gelombang P, dan parameter pertama Lamé adalah moduli elastisitas lainnya. Rasio Poisson dapat digunakan untuk membandingkan regangan kontraksi transversal dengan regangan perpanjangan longitudinal. Bersama dengan hukum Hooke, nilai-nilai ini menggambarkan sifat elastis suatu material. Sumber ASTM E 111, " Metode Uji Standar untuk Modulus Young, Modulus Tangen, dan Modulus Akor ". Buku Standar Volume G. Riccati, 1782, Delle vibrazioni sonore dei cilindri , Mem. tikar. fis. pergaulan Italia, vol. 1, hal 444-525. Liu, Mingjie; Artyukhov, Vasilii I; Lee, Hoonkyung; Xu, Fangbo; Yakobson, Boris I 2013. "Carbyne Dari Prinsip Pertama Rantai Atom C, Nanorod atau Nanorope?". ACS Nano . 7 11 10075–10082. doi Truesdell, Clifford A. 1960. Mekanika Rasional Benda Fleksibel atau Elastis, 1638–1788 Pengantar Leonhardi Euleri Opera Omnia, vol. X dan XI, Seriei Secundae . Orell Fussli. Dimensidari modulus Young adalah Bagi kamu yang mencari namun tidak juga menemukan jawaban yang benar, dari pertanyaan tentang Dimensi Modulus Young Adalah maka pada kesempatan kali ini kakak akan memberi jawaban dan juga pembahasan yang cocok untuk pertanyaan tentang Dimensi Modulus Young Adalah.Untuk itu sekali lagi kami sarankan untuk memperhatikan jawaban yang ada di bawah ini, agar
Postingan ini diperbarui 25 Agustus 2021I. Latar BelakangDi Indonesia banyak kita jumpai jembatan. Baik jembatan kayu, besi, atau dari bahan yang lainnya. Saat jembatan tersebut dilewati banyak manusia, kendaraan, atau beban yang berada di tengah-tengah jembatan, maka jembatan akan melengkung meskipun ketika jembatan tidak ada yang melewati, maka akan kembali ke semula. Peristiwa tersebut berhubungan dengan modulus young adalah melengkungnya sebuah penggaris jika di tengah-tengah penggaris diberikan beban. Dimana dalam peristiwa diatas kita dapat menghitung atau menentukan elastisitas dari suatu young adalah ukuran kekakuan suatu bahan elastis yang merupakan ciri dari suatu bahan. Modulus young sebagai rasio tegangan dalam sistem koordinat kartesius terhadap regangan sepanjang aksis pada jangkuan tegangan dimana hukum hooke berlaku. Nilai modulus young bisa diperoleh dalam eksperimen menggunakan uji kekuatan tarik dari suatu young juga adalah penggambaran modulus elastis yang paling umum. Menentukan Modulus young dari suatu bahan tidak terlepas dari sifat elastisitas suatu benda dan batas elastisnya. Elastisitas adalah sifat dimana benda kembali pada ukuran dan bentuk awalnya ketika gaya-gaya yang mengubah bentuknya elastis suatu benda adalah tegangan terkecil yang akan menghasilkan gangguan permanen pada benda. Ketika diberikan tegangan melebihi batas ini, benda tidak akan kembali persis seperti keaadaan awalnya setelah tegangan tersebut dihilangkan. Berdasarkan latar belakang tersebut maka dilaksanakan praktikum tentang modulus Tujuan PraktikumAdapun tujuan praktikum modulus young ini dilaksanakan adalah sebagai berikut Menentukan sifat elastisitas bahan di bawah pengaruh modulus young juga Alat-alat Pengukuran Praktikum Fisika DasarII. TINJAUAN Hukum Hooke Sumber Young merupakan besaran yang menyatakan sifat elastis suatu bahan tertentu dan bahan menunjukkan langsung seberapa jauh sebuah batang atau kabel atau pegas yang bersangkutan mengalami perubahan akibat pengaruh beban f = kx. Konstanta k atau perbandingan gaya terhadap perpanjangan disebaut konstanta gaya atau kekuatan pegas. Bilangannya sama dengan gaya yang diperlukan untuk menghasilkan perpanjangan satuan Anwar, 2008.Menurut Hooke, regangan sebanding dengan tegangannya,dimana yang dimaksud dengan regangan adalah presentasi perubahan dimensi. Tegangan adalah gaya-gaya yang merenggang persatuan luas pemampang yang dikenainya Soedojo, 2004. ElastisitasSumber adalah kemampuan suatu bahan untuk kembali ke bentuk semula setelah gaya yang diberikan pada benda dihentikan. Dengan kata lain, semakin besar gaya tarik semakin besar pertambahan panjang pegas. Perbandingan besar gaya tarik F terhadap pertambahan panjang pegas yang bernilai konstan. Sesuai dengan rumus yang dikemukakan oleh Robert Hooke dan dikenal dengan hukum hooke,yaitu sebagai berikut F∕x=k,f=x=k Anwar, 2008.Jika luas penampang adalah A, maka tegangan tarik adalah F/A. Dimana panjang mula-mula adalah L_0, akibat gaya yang bekerja F sehingga batang tersebut bertambah panjang adalah L. Maka regangan tariknya adalah L/ elastis hubungan antara tegangan dan regangan, bentuk grafiknya linier serta didaerah ini berlaku hukum Hooke Modulus Young merupakan perbandingan antara tegangan dan regangan. Dalam pelaksanaan praktikum ini ada bahan dan alat yang digunakan adalah sebagai berikut1. KawatKawat adalah benda yang terbuat dari logam yang panjang dan lentur. Kawat merupakan benda penghantar listrik. Kawat mempunyai banyak bentuk dan ukuran. Kawat yang digunakan untuk menghantar listrik biasa dibungkus dengan kulit yang terbuat dari karet yang biasa disebut StatifStatif adalah alat yang berfungsi untuk menempatkan penjepit buret atau penyangga Mikrometer SekrupAlat ukur mikrometer sekrup ialah salah satu alat ukur yang bisa digunakan untuk mengukur panjang suatu benda dan mengukur tebal sebuah benda serta mengukur diameter luar sebuah benda dengan tingkat ketelitian mencapai Mistar atau PenggarisMistar adalah Alat ukur ini memiliki skala terkecil 1 mm atau 0,1 cm dan memiliki ketelitian pengukuran setengah dari skala terkecilnya yaitu 0,5 Timbangan AnalitikTimbangan atau neraca analitik adalah alat laboratorium yang digunakan untuk menimbang sejumlah bahan dalam ukuran miligram sangat kecil bobotnya.Baca juga Kadar Air dan Berat Jenis Kayu Sengon Laporan Fisika DasarIII. METODE Tempat dan WaktuAdapun praktikum modulus young ini dilaksanakan di laboratorium THH Teknologi Hasil Hutan Jurusan kehutanan fakultas pertanian Universitas Palangka Raya tanggal 23 April 2018 pukul Alat dan BahanAdapun alat dan bahan yang digunakan dalam praktikum ini adalah Kawat, Dua buah beban, Mistar, Statif, Timbangan Analitik, dan Mikrometer Cara Percobaan IMenggantungkan sebuah kawat 15 cm pada sebuah statik. Mengukur panjang kawat yang akan ditentukan Modulus Youngnya, lalu mengukur menggunakan mistar. Menggantungkan beban pada seutas kawat yang digantungkan pada statik. Mencatat penambahan panjang oleh beban satu yang diberikan pada kawat setiap 3 Percobaan IIMenggantungkan kembali sebuah kawat 35 cm pada sebuah panjang kawat yang akan ditentukan Modulus Youngnya, lalu lalu mengukur menggunakan mistar. Menggantungkan beban pada seutas kawat yang digantungkan pada statik. Mencatat penambahan panjang oleh beban satu yang diberikan pada kawat setiap 3 HASIL DAN Kawat 15 cmAdapun hasil yang diperoleh pada percobaan I praktikum ini adalah sebagai berikutDalam tabel diatas pada kawat 1 mempunyai 3 jenis beban yaitu 0,958 Kg, 1,790 Kg, dan 2,148 Kg yang elastisitasnya yaitu 818,46 N/m^2, 736,67 N/m^2, dan 649,57 N/m^2. Pada kawat 2 mempunyai 3 jenis beban yaitu 0,94189 Kg, 1,79893 Kg, dan 2,73182 Kg yang elastisitasnya yaitu 317,121 N/m^2, N/m^2, dan N/m^2. Pada kawat 3 mempunyai 3 jenis beban yaitu 0,88297 Kg, 1,58733 Kg, dan 2,4766 Kg yang elastisitasnya yaitu 754,615 N/m^2, 534,454 N/m^2, dan 520,616 N/m^2. Dan yang terakhir pada kawat 4 mempunyai 3 jenis beban yaitu 0,9682 Kg, 1,84315 Kg, dan 2,81135 Kg yang elastisitasnya yaitu 827,461 N/m^2, N/m^2, dan 946,575 N/m^ hasil percobaan kawat yang panjangnya 15 cm nilai elastisitas yang tingg terdapat pada kawat 2 dan nilai elastisitas terendah terdapat pada kawat 3. Hal ini disebabkan karena elastisitas dipengaruhi besar kecilnya tegangan dan regangan. Tegangan didapatkan dari perbandingan antara gaya beban dengan luas penampang, sedangkan regangan didapatkan dari perbandingan antara selisih panjang kawat dengan panjang akhir kawat. Semakin besar tegangan dan semakin kecil regangan maka semakin besar nilai elastisitasnya, sedangkan semakin kecil tegangan dan semakin besar regangan maka semakin kecil nilai elastisitasnya Soedojo, 2004 .Dalam tabel diatas rata-rata regangan kawat adalah 0,027 sedangkan rata-rata tegangan kawat adalah 19,942 dan nilai b dari tabel adalah -189,320 sedangkan nilai a adalah 25, 054 sehingga diperoleh persamaan Y= 20,51 + 37,5 X. Persamaan tersebut menunjukkan hubungan antara regangan X dengan tegangan Y artinya tegangan memiliki nilai yang lebih tinggi daripada nilai regangan. Hal ini sesuai dengan hukum Hooke dimana elastisitas merupakan perbandingan antara tegangan dan regangan sehingga membentuk nilai tegangan yang lebih tinggi daripada regangan maka nilai elastisitasnya tinggi sedangkan apabila nilai tegangan lebih rendah daripada regangan maka nilai elastisitasnya Kawat 35 cmAdapun hasil yang diperoleh dari pelaksanaan praktikum ini adalah sebagai berikutDalam tabel diatas pada kawat 1 mempunyai 3 jenis beban yaitu 0,958 Kg, 1,790 Kg, dan 2,148 Kg yang elastisitasnya yaitu N/m^2, N/m^2, dan N/m^2. Pada kawat 2 mempunyai 3 jenis beban yaitu 0,94189 Kg, 1,79893 Kg, dan 2,73182Kg yang elastisitasnya yaitu 747,5 N/m^2, N/m^2, dan N/m^2. Pada kawat 3 mempunyai 3 jenis beban yaitu 0,88297 Kg, 1,58733 Kg, dan 2,4766 Kg yang elastisitasnya yaitu N/m^2, N/m^2, dan N/m^2. Dan yang terakhir pada kawat 4 mempunyai 3 jenis beban yaitu 0,9682 Kg, 1,84315 Kg, dan 2,81135 Kg yang elastisitasnya yaitu 768,357 N/m^2, N/m^2, dan N/m^ hasil percobaan kawat yang panjangnya 35 cm nilai elastisitas yang tingg terdapat pada kawat 1 dan nilai elastisitas terendah terdapat pada kawat 4. Hal ini disebabkan karena elastisitas dipengaruhi besar kecilnya tegangan dan regangan. Tegangan didapatkan dari perbandingan antara gaya beban dengan luas penampang, sedangkan regangan didapatkan dari perbandingan antara selisih panjang kawat dengan panjang akhir kawat. Semakin besar tegangan dan semakin kecil regangan maka semakin besar nilai elastisitasnya, sedangkan semakin kecil tegangan dan semakin besar regangan maka semakin kecil nilai elastisitasnya Soedojo, 2004 .Dalam tabel diatas rata-rata regangan kawat adalah 0,015 sedangkan rata-rata tegangan kawat adalah 19,942 dan nilai b dari tabel adalah -37,5 sedangkan nilai a adalah 20,51 sehingga diperoleh persamaan Y= 20,51 + 37,5 X. Persamaan tersebut menunjukkan hubungan antara regangan X dengan tegangan Y artinya tegangan memiliki nilai yang lebih tinggi daripada nilai regangan. Hal ini sesuai dengan hukum Hooke dimana elastisitas merupakan perbandingan antara tegangan dan regangan sehingga membentuk nilai tegangan yang lebih tinggi daripada regangan maka nilai elastisitasnya tinggi sedangkan apabila nilai tegangan lebih rendah daripada regangan maka nilai elastisitasnya rendah Bahtiar et al., 2010.III. KesimpulanAdapun kesimpulan dari praktikum modulus young yang dilakukan adalah sebagai berikut Sifat elastisitas kawat mempunyai tegangan kawat yang lebih tinggi daripada regangan elastisitas kawat dipengaruhi jenis kawat, beban kawat, panjang kawat, tegangan kawat, dan regangan SaranAdapun saran dari praktikum ini adalah jenis kawat ini bisa digunakan lagi sebagai bahan praktikum untuk jenis praktikum lainnya seperti praktikum pengaruh asam dan basa terhadap kawat, penghantar arus listrik melalui kawat, dan juga Mengenal Selulosa, Hemiselulosa, dan LigninDAFTAR PUSTAKAAnwar Budianto, A. B. 2008. Metode Penentuan Koefisien Kekentalan Zat Cair dengan Menggunakan Regresi Linear Hukum Stokes. In Seminar Nasional IV SDM Teknologi Nuklir pp. 157-166.Bahtiar, E. T., Nugroho, N., & Surjokusumo, S. 2010. Estimating Younga Modulus and Modulus of Rupture of Coconut Logs using Reconstruction Method. Civil Engineering Dimension, 122, P. 2004. Pengantar Sejarah dan Filsafat Ilmu Pengetahuan Lestari,Lamboris Pane
X13FVG.
  • 9wdt9exun1.pages.dev/401
  • 9wdt9exun1.pages.dev/172
  • 9wdt9exun1.pages.dev/410
  • 9wdt9exun1.pages.dev/163
  • 9wdt9exun1.pages.dev/133
  • 9wdt9exun1.pages.dev/307
  • 9wdt9exun1.pages.dev/124
  • 9wdt9exun1.pages.dev/375
  • dimensi dari modulus young adalah